Boundedly complete $M$-bases and complemented subspaces in Banach spaces
نویسندگان
چکیده
منابع مشابه
Subspaces and Quotients of Banach Spaces with Shrinking Unconditional Bases
The main result is that a separable Banach space with the weak∗ unconditional tree property is isomorphic to a subspace as well as a quotient of a Banach space with a shrinking unconditional basis. A consequence of this is that a Banach space is isomorphic to a subspace of a space with an unconditional basis iff it is isomorphic to a quotient of a space with an unconditional basis, which solves...
متن کاملComplemented Subspaces in the Normed Spaces
The purpose of this paper is to introduce and discuss the concept of orthogonality in normed spaces. A concept of orthogonality on normed linear space was introduced. We obtain some subspaces of Banach spaces which are topologically complemented.
متن کاملComplemented Subspaces of Spaces Obtained by Interpolation
If Z is a quotient of a subspace of a separable Banach space X, and V is any separable Banach space, then there is a Banach couple (A0, A1) such that A0 and A1 are isometric to X ⊕ V , and any intermediate space obtained using the real or complex interpolation method contains a complemented subspace isomorphic to Z. Thus many properties of Banach spaces, including having non-trivial cotype, hav...
متن کاملContractively Complemented Subspaces of Pre-symmetric Spaces
In 1965, Ron Douglas proved that if X is a closed subspace of an L-space and X is isometric to another L-space, then X is the range of a contractive projection on the containing L-space. In 1977 Arazy-Friedman showed that if a subspace X of C1 is isometric to another C1-space (possibly finite dimensional), then there is a contractive projection of C1 onto X. In 1993 Kirchberg proved that if a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1973
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1973-0317011-5